logo
Master Thesis Approximating Model Predictive Controllers Using Imitation Learning
comp Robert Bosch GmbH comp 71272 Renningen - Deutschland
Bachelor Professional - Künstl. Intell./Maschinelles Lernen Praktikum/Trainee/Werkstudent Vollzeit ab 04.09.2025
Beschreibung

Willkommen bei Bosch
Bei Bosch gestalten wir Zukunft mit hochwertigen Technologien und Dienstleistungen, die Begeisterung wecken und das Leben der Menschen verbessern. Unser Versprechen an unsere Mitarbeiterinnen und Mitarbeiter steht dabei felsenfest: Wir wachsen gemeinsam, haben Freude an unserer Arbeit und inspirieren uns gegenseitig. Willkommen bei Bosch.
Die Robert Bosch GmbH freut sich auf eine Bewerbung!

Job Description
Approximate model predictive control (AMPC) has emerged as an approach to tackle the computational burden of MPC, aiming to approximate the MPC policy with a computationally cheaper surrogate, such as, e.g. neural networks. So far, the standard approach to obtain such a surrogate policy is based on naive behavioral cloning. This approach, however, has significant drawbacks, resulting in the surrogate policy to potentially not provide the original MPC guarantees. To tackle this, a tailored AMPC imitation learning (IL) procedure was developed recently, enabling consistent learning of a surrogate policy, and ensuring that the learned policy maintains the original MPC safety and stability guarantees, thereby enabling MPC-based control functions in safety critical industrial settings.
- The goal of your thesis is to extend the statistical properties of the proposed IL procedure by analyzing the rate with which the learned policy converges to the MPC policy, ultimately with the goal of providing finite sample bounds on the error between the policies.
- Moreover, the thesis could cover the investigation of more generic error estimations, stopping criteria and studies on sample efficiency.
- Based on this, the second goal of your thesis is the deployment of the developed AMPC IL procedure to a real-world automated driving problem. This includes comparison with other existing approaches.

Qualifications
- Education: Master studies in the field of Cybernetics, Engineering, Mathematics, Computer Science or comparable
- Experience and Knowledge: profound knowledge of Machine Learning and Control Engineering; experience with Python DL frameworks such as PyTorch, TensorFlow or JAX
- Personality and Working Practice: you excel at working autonomously, systematically organizing your tasks, and applying analytical thinking to solve complex problems
- Languages: very good in English

Additional Information
Diversity and inclusion are not just trends for us but are firmly anchored in our corporate culture. Therefore, we welcome all applications, regardless of gender, age, disability, religion, ethnic origin or sexual identity.
#LI-DNI






info
Quelle: Bundesagentur für Arbeit - Rechtliche Hinweise zur Nutzung
Ob die Stelle noch verfügbar ist und weitere Informationen findest du direkt auf der Website der Bundesagentur für Arbeit. Bitte beachte: OPROMA ist nicht der Anbieter dieser Stelle und kann keine Auskünfte geben.
Ref-Nr.: 9e77c65111dfc5d03012819bbb04fddf
Letztes Update: 11.09.2025
notifications_active Erstelle dein kostenloses Bewerberprofil und werde von Arbeitgebern gefunden!
notifications_active Erstelle dein kostenloses Bewerberprofil und werde von Arbeitgebern gefunden!
comp M Drive Fahrschule
comp 51465 Bergisch Gladbach
ab 13.09.2025
comp BlueLaserTools GmbH
comp 09116 Chemnitz, Sachsen
ab 11.09.2025
comp Hautzentrum Weinheim PD Dr. med. Laurenz Schmitt
comp 69469 Weinheim, Bergstraße
Arbeit ab 01.10.2025
comp Bildungsträger Meiningen e.V.
comp 98617 Meiningen
Arbeit ab 13.09.2025
comp LEB Sachsen e. V. Brand-Erbisdorf
comp 09618 Brand-Erbisdorf
ab 01.02.2026