logo
Master Thesis on Data-Based Modelling of Electric Drives for Reinforcement Learning-Based Control...
comp Robert Bosch GmbH comp 71272 Renningen - Deutschland
Ingenieur/in - Elektromobilität Praktikum/Trainee/Werkstudent Vollzeit ab 08.07.2025
Beschreibung

Willkommen bei Bosch
Bei Bosch gestalten wir Zukunft mit hochwertigen Technologien und Dienstleistungen, die Begeisterung wecken und das Leben der Menschen verbessern. Unser Versprechen an unsere Mitarbeiterinnen und Mitarbeiter steht dabei felsenfest: Wir wachsen gemeinsam, haben Freude an unserer Arbeit und inspirieren uns gegenseitig. Willkommen bei Bosch.
Die Robert Bosch GmbH freut sich auf eine Bewerbung!

Job Description
The performance and efficiency of electric drives are fundamentally determined by their control methods and modulation schemes. While conventional approaches rely on simplified models and control structures, these limitations often restrict optimal performance in real-world applications. Reinforcement Learning (RL) has emerged as a promising solution, offering the potential to enhance performance through more sophisticated models and control structures, e.g. direct switching control which directly manipulates the switching time instants of the inverter terminals. However, RL agents trained in simulation environments using simplified models frequently experience performance gaps when deployed in real-world scenarios. The main objective of this thesis is the development of an innovative electric drive model suitable for a direct switching controller design using reinforcement learning.
- During your thesis you will conduct a comprehensive literature review on data-based modelling and control of electric drives.
- You will develop a concept for electric drive system excitation for generating training data capturing the switching behavior.
- Furthermore, you will elaborate an electric drive model that captures the switching behavior using physics-based and data-based modelling techniques.
- Optionally, you will train and evaluate a direct switching controller using reinforcement learning and the developed models.
- Finally, the documentation of your work also falls within your area of responsibility.

Qualifications
- Education: Master studies in the field of Cybernetics, Computer Science, Engineering, Mathematics or comparable
- Experience and Knowledge: profound knowledge of machine learning and control theory; experience in Matlab/Simulink and Python, ideally in DL frameworks; knowledge of electrical machines is a plus
- Personality and Working Practice: you excel at working autonomously, systematically organizing your tasks, and applying analytical thinking to solve complex problems
- Languages: very good in English

Additional Information
Start: according to prior agreement
Duration: 6 months
Requirement for this thesis is the enrollment at university. Please attach your CV, transcript of records, examination regulations and if indicated a valid work and residence permit.
Diversity and inclusion are not just trends for us but are firmly anchored in our corporate culture. Therefore, we welcome all applications, regardless of gender, age, disability, religion, ethnic origin or sexual identity.
#LI-DNI






info
Quelle: Bundesagentur für Arbeit - Rechtliche Hinweise zur Nutzung
Ob die Stelle noch verfügbar ist und weitere Informationen findest du direkt auf der Website der Bundesagentur für Arbeit. Bitte beachte: OPROMA ist nicht der Anbieter dieser Stelle und kann keine Auskünfte geben.
Ref-Nr.: 1472b2f2dd5f749e6ea46573f8eb6add
Letztes Update: 16.09.2025
notifications_active Erstelle dein kostenloses Bewerberprofil und werde von Arbeitgebern gefunden!
notifications_active Erstelle dein kostenloses Bewerberprofil und werde von Arbeitgebern gefunden!
comp T & O Bauen- und Umwelt GmbH
comp 48683 Ahaus
Arbeit ab 17.09.2025
comp FES GmbH Fahrzeug-Entwicklung Sachsen
comp 08058 Zwickau
Arbeit ab 17.09.2025
comp CITY PHYSIO NEUSS Liane & Victoria Strohmeyer GbR
comp 41460 Neuss
Arbeit ab 17.09.2025
comp Dental-Technik Schoch GmbH
comp 69168 Wiesloch
Arbeit ab 17.09.2025