Beschreibung
An der Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts – Institut für Informatik ist zum nächstmöglichen Zeitpunkt eine Stelle alsJunior Research Group Leader UGOE/(NET) (all genders welcome)- Entgeltgruppe 14 TV-L - in Vollzeit (teilzeitgeeignet) zu besetzen. Die Stelle ist befristet auf 2 Jahre.This position targets at the field of data-driven analytics for innovative knowledge discovery. We are looking for a committed and outstanding junior research group leader for the newly ...
weiter lesen
An der Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts – Institut für Informatik ist zum nächstmöglichen Zeitpunkt eine Stelle alsJunior Research Group Leader UGOE/(NET) (all genders welcome)- Entgeltgruppe 14 TV-L - in Vollzeit (teilzeitgeeignet) zu besetzen. Die Stelle ist befristet auf 2 Jahre.This position targets at the field of data-driven analytics for innovative knowledge discovery. We are looking for a committed and outstanding junior research group leader for the newly established junior research group “Data-driven Scientific Knowledge Discovery.”
Junior Research Group Resources:
Funding for Junior Research Group leader's position as research staff (TV-L E14, 100%) for two years
Budget for travel and other costs
Administrative support through the Secretary of Computer Networks Group
Access to the excellent research infrastructure of the Göttingen Campus
The Junior Research Group will focus on modern AI and network-based methods for understanding and advancing scientific knowledge creation, with particular attention to how language, social structure, and data-driven systems shape innovation outcomes. The position includes a teaching load of 4 semester hours (SWS) per week, primarily in graduate courses. The successful candidate will also contribute to acquisition and management of third-party research projects.
Core research themes include:
Data-driven modeling of scientific and innovation ecosystems, including funding systems, research collaboration networks, and knowledge diffusion
AI and NLP methods for scientific texts, such as grant proposals, research articles, and technical documentation
Network-based and simulation-based models of knowledge evolution, novelty, and structural change
Hybrid approaches combining machine learning with domain knowledge, especially in socio-technical systems
Applications in research evaluation, funding allocation, and technology transfer, with empirical grounding in large-scale real-world datasets
These research directions align closely with ongoing activities in the Computer Networks Group, while also strengthening Göttingen’s interdisciplinary ecosystem through CIDAS, social sciences, and the broader scientific campus.
Technical and Academic Qualifications:
A Ph.D. in Computer Science or a closely related field, with specialization in AI, computational modeling, or data-driven analysis of complex systems
An excellent publication record relative to career stage, including publications in top-tier interdisciplinary, AI, and science-focused venues
Demonstrated expertise in several of the following areas:
Natural Language Processing and modern AI architectures
Computational social science and network analysis
Data-driven modeling of scientific and innovation systems
Large-scale empirical analysis of socio-technical data
Simulation and hybrid modeling approaches
Postdoctoral experience is required, with a strong preference for candidates who are currently holding or have held an independent postdoctoral position, such as Research Assistant Professor, Senior Researcher, or equivalent, demonstrating the ability to pursue an autonomous research agenda.
Personal Competencies:
Strong motivation to build and lead an independent research group
Enthusiasm for interdisciplinary collaboration
Team skills and leadership competence
Excellent communication skills in English
Commitment to supervising and mentoring doctoral students
We offer:
An outstanding scientific environment with access to state-of-the-art computing infrastructure
Integration into the interdisciplinary research environment in Göttingen with partners from computer science, social sciences and humanities, and life sciences
Opportunity for close collaboration with the Campus Institute Data Science (CIDAS), University Medical Center Göttingen, State and University Library (SUB), several Max Planck Institutes
Opportunities to actively participate in the strategic development of the Computer Networks Group
Support in acquiring third-party funding and building international collaborations
A family-friendly work environment with flexible working time models
The benefits of a historic university town with high quality of life
Your application should contain the following documents:
Cover letter presenting your research vision
CV with complete publication list
Brief description of previous and planned research activities (max. 3 pages) and teaching plan (max. 2 pages)
Contact details of two referees
Copies of relevant certificates and diplomas
Die Universität Göttingen strebt in den Bereichen, in denen Frauen unterrepräsentiert sind, eine Erhöhung des Frauenanteils an und fordert daher qualifizierte Frauen nachdrücklich zur Bewerbung auf. Sie versteht sich zudem als familienfreundliche Hochschule und fördert die Vereinbarkeit von Wissenschaft/Beruf und Familie. Der beruflichen Teilhabe von schwerbehinderten Beschäftigten sieht sich die Universität in besondere Weise verpflichtet und begrüßt deshalb Bewerbungen schwerbehinderter Menschen. Bei gleicher Qualifikation erhalten Bewerbungen von Menschen mit Schwerbehinderung den Vorzug. Eine Behinderung bzw. Gleichstellung ist zur Wahrung der Interessen bereits in die Bewerbung aufzunehmen.Bitte reichen Sie Ihre aussagekräftige Bewerbung mit allen wichtigen Unterlagen bis zum 10.02.2026 ausschließlich über das Bewerbungsportal http://obp.uni-goettingen.de/de-de/OBF/Index/76301 ein. Auskunft erteilt Herr Xiaoming Fu, E-Mail: fu@cs.uni-goettingen.de, Tel. +4955139172023Hinweis: Wir weisen darauf hin, dass die Einreichung der Bewerbung eine datenschutzrechtliche Einwilligung in die Verarbeitung Ihrer Bewerbungsdaten durch uns darstellt. Näheres zur Rechtsgrundlage und Datenverwendung finden Sie im Hinweisblatt zur Datenschutzgrundverordnung (DSGVO)