logo
Master Thesis on Data-Based Modelling of Electric Drives for Reinforcement Learning-Based Control...
comp Robert Bosch GmbH comp 71272 Renningen - Deutschland
Ingenieur/in - Elektromobilität Praktikum/Trainee/Werkstudent Vollzeit ab 17.10.2025
Beschreibung

Willkommen bei Bosch
Bei Bosch gestalten wir Zukunft mit hochwertigen Technologien und Dienstleistungen, die Begeisterung wecken und das Leben der Menschen verbessern. Unser Versprechen an unsere Mitarbeiterinnen und Mitarbeiter steht dabei felsenfest: Wir wachsen gemeinsam, haben Freude an unserer Arbeit und inspirieren uns gegenseitig. Willkommen bei Bosch.
Die Robert Bosch GmbH freut sich auf eine Bewerbung!

Job Description
The performance and efficiency of electric drives are fundamentally determined by their control methods and modulation schemes. While conventional approaches rely on simplified models and control structures, these limitations often restrict optimal performance in real-world applications. Reinforcement Learning (RL) has emerged as a promising solution, offering the potential to enhance performance through more sophisticated models and control structures, e.g., direct switching control which directly manipulates the switching time instants of the inverter terminals. However, RL agents trained in simulation environments using simplified models frequently experience performance gaps when deployed in real-world scenarios. The main objective of this thesis is the development of an innovative electric drive model suitable for a direct switching controller design using reinforcement learning.
- During your thesis you will conduct a comprehensive review of existing literature on data-based modeling techniques and advanced control strategies applied to electric drives.
- You will develop a novel and effective concept for systematically exciting electric drive systems. The primary objective is to generate rich and informative training data that accurately captures the switching behavior.
- Based on the collected training data and insights from the literature review, you will develop an advanced electric drive model that precisely captures the switching behavior combining physics-based and data-based modeling techniques.
- An optional extension involves training and evaluating a direct switching controller using reinforcement learning techniques and the developed models.
- Finally, you will thoroughly document all developed concepts and results culminating in a comprehensive thesis report.

Qualifications
- Education: Master studies in the field of Cybernetics, Computer Science, Engineering, Mathematics or comparable
- Experience and Knowledge: profound knowledge of machine learning and control theory; experience in MATLAB/Simulink, Python and ideally in DL frameworks; knowledge of electrical machines is a plus
- Personality and Working Practice: you work autonomously with a systematic practice and analytic thinking, quickly grasping concepts and structuring tasks
- Languages: very good in English

Additional Information
Start: according to prior agreement
Duration: 6 months
Requirement for this thesis is the enrollment at university. Please attach your CV, transcript of records, examination regulations and if indicated a valid work and residence permit.
Diversity and inclusion are not just trends for us but are firmly anchored in our corporate culture. Therefore, we welcome all applications, regardless of gender, age, disability, religion, ethnic origin or sexual identity.
#LI-DNI






info
Quelle: Bundesagentur für Arbeit - Rechtliche Hinweise zur Nutzung
Ob die Stelle noch verfügbar ist und weitere Informationen findest du direkt auf der Website der Bundesagentur für Arbeit. Bitte beachte: OPROMA ist nicht der Anbieter dieser Stelle und kann keine Auskünfte geben.
Ref-Nr.: d3768a6ebab55518534dbb0215bd29fe
Letztes Update: 17.10.2025
notifications_active Erstelle dein kostenloses Bewerberprofil und werde von Arbeitgebern gefunden!
notifications_active Erstelle dein kostenloses Bewerberprofil und werde von Arbeitgebern gefunden!
comp FRANKONIA Hospitality GmbH
comp 40213 Düsseldorf
Arbeit ab 17.10.2025
comp Pädagogische Kinderförderungsgesellschaft mbH
comp 71638 Ludwigsburg, Württemberg
Arbeit ab 17.10.2025
comp KMS Zeitarbeit GmbH
comp 89340 Leipheim
Arbeit ab 17.10.2025
comp E+Service+Check GmbH
comp 06636 Laucha an der Unstrut
Arbeit ab 17.10.2025
comp KÖTTER SE & Co. KG Reinigung & Service
comp 28237 Bremen
Arbeit ab 17.10.2025